Organic Reactions of Fluoroxy Compounds-Fluorination of Imines

By DEREK H. R. BARTON, ROBERT H. HESSE, THOMAS R. KLOSE, and MAURICE M. PECHET

(Research Institute for Medicine and Chemistry, Cambridge, Massachusetts 02142)

Summary Schiff's bases react smoothly with CF_3OF to afford, in *alcoholic media*, NN-difluoroamines; the reaction provides a convenient conversion of amines into NN-difluoroamines under mild conditions.

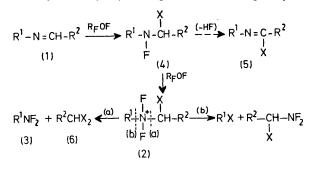
WE have recently reported that imino ethers react smoothly with fluoroxy-reagents to afford *NN*-difluoroamino-compounds, which are not readily available by other methods.² We now describe an alternative procedure on more accessible substrates.

$$R^{1}N=C(OEt)R^{2} \xrightarrow{R_{F}OF} R^{1}NF_{2}+R^{2}CF_{2}OEt \quad (1)$$

We expected that the non-activated carbon-nitrogen double bond of an imine (1) would undergo two successive reactions with a fluoroxy-reagent¹ producing the NNdifluoroammonium ion (2) (Scheme 1). Now if \mathbb{R}^2 were sufficiently electron releasing (e.g. \mathbb{R}^2 =Ph), then cleavage 'a' should predominate leading to the required product, $\mathbb{R}^1\mathbb{NF}_2$ (3).

The fluorination of imines with elemental fluorine has been shown³ to occur as in Scheme 1, with added complexity due to competitive dehydrofluorination of the intermediate *N*-fluoroamine (4; X = F). The resulting imido-fluoride (5; X = F) undergoes further fluorination leading to a variety of products. Recently, the reaction of a number of imines with the fluoroxy-reagent CF₃OF in non-nucleophilic solvents has also been shown⁴ to follow a similar complex course.

We found that the reaction of CF_3OF (2 mol. equiv.) with *N*-benzylidene-1-adamantylamine⁵ in dichloromethane leads to a very complex mixture of fluorine-containing products. We report now that in the presence of a suitable nucleophile such as methanol the course of the reaction is dramatically altered. Thus, the imine (1; $R^1 = adamantyl_{,R^2} = Ph$) on treatment with CF_3OF (2 mol. equiv.) in dichloromethane in the presence of methanol (15-100%).

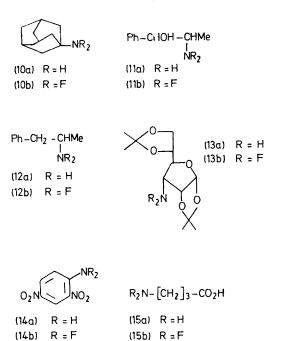

TABLE

Synthesis of difluoroamino-compounds

Substrate RNH ₂	Method usedª	Yield of product RNF2, %	¹⁹ F-n.m.r. (p.p.m. from CFCl ₈)	Product difluoramines
(10 a)	1	(10b)	-19.9	M.p. 113.5-
	2	55—75 (10b) 70	(br,s)	115°
(11a)	2	(11b) ^b	-42.4 (m)	Unstable oil
(12a)	2	(12b) 76	— 39·5 (m)	Oil: b.p. 85—
				86 at 15 mm Hg1
(13a) °	1	(13b) 57	-55.3 (m)	Oil: $(M - 15)^+$
	2	(13b) 71		280.0993ª
(14a)	2	(14b) 68	-67.5	Oil: M^+
		•	(br.s)•	219.0114
(15a)	11	(15b) 64	-56.1 (t)	B.p. 52—54°
			J _{HF} 29 Hz	at 15 mm
			-	Hg ² e

^a Method 1—Fluorination of the benzylidine imine in MeOH– CH_gCl_g (1:4 v/v); method 2—Fluorination of sodium salt of the *p*-carboxybenzylidine imide in MeOH–CH₂Cl_g (see text). ^b The difluoroamine from nor-ephedrine was unstable and the yield could not be accurately determined (see text). ^c Preparation by the method of Whistler and Doner.⁶ ^d Acetonides always show an intense M — CH₃ (*i.e.* M — 15) species (but no M^+)⁷ making calculation of the molecular formula possible. ^e Previously prepared by reaction of fluorine with 2,4-dinitroaniline^{2g} but not obtained pure. ^f Reaction performed on the sodium salt of the benzylidine imine.

v/v), at 0°, leads cleanly to NN-difluoro-1-adamantylamine¹ (10b) in 60-75% yield. A second product of this reaction is benzaldehyde dimethylacetal (6; X = OMe, $R^2 = Ph$). Similarly, while N-(p-nitrobenzylidene)-1-adamantylamine gave almost exclusively products derived from the adamantyl cation when fluorinated in the absence of nucleophilic solvent, in the presence of methanol NN-difluoro-1adamantylamine (10b) was again obtained in good yield.


 $X = R_{E}O$ or F or OMe

SCHEME 1

The isolation of the dimethylacetal (6; X = OMe, $R^2 = Ph$) establishes the course of the reaction as that depicted in Scheme 1, via intermediates (4) and (2) (X =OMe). The methoxy-group of (2) now provides the dominant driving force for cleavage 'a' to occur as desired.

$$R-NH_{2} + CHO - C_{6}H_{4} - CO_{2}^{-} Na^{+} - p \longrightarrow R-N = CH - C_{6}H_{4} - CO_{2}^{-} Na^{+} - p$$
(7)
(8)
(3) + (MeO)_{2} CH - C_{6}H_{4} - CO_{2}^{-} Na^{+} - p
(9)

To simplify the separation and purification of the product difluoroamines (3), we examined the fluorination of imines derived from sodium 4-formylbenzoate (7). Although such imines (8) are rapidly and completely hydrolysed on protonation, we find that fluorination of the sodium salts (8)with CF₃OF (2 mol.equiv.) proceeds at 0° in methanoldichloromethane (1:4, v/v) with a suitable buffer (KOAc). The by-product acetal (9) can then be extracted into aqueous base. In this way, 1-adamantylamine (10a) can be converted into its NN-diffuoro derivative (10b) in good yield (70%) and without isolation of any intermediates (Scheme 2).

SCHEME 2

This method provides a general, effective, and convenient synthesis of NN-difluoroamino-compounds from the parent amino-compound. The Table summarizes the application of the new imine fluorinations to the synthesis of NNdifluoroamino-derivatives. The limitation lies in the intrinsic stability of the product. For example, the imine (8) from nor-ephedrine (11a) is fluorinated smoothly to give NN-difluoro-nor-ephedrine (11b). However, (11b) on standing or attempted purification, fragments into benzaldehyde and acetonitrile. We find this cleavage to be a general reaction of α -hydroxy-NN-difluoroamines. Thus the saccharide (13b) undergoes such a cleavage slowly on attempted purification and instantly on attempted hydrolysis.

(Received, 4th October 1974; Com. 1248.)

¹ D. H. R. Barton, R. H. Hesse, M. M. Pechet, and H. T. Toh, *J.C.S. Perkin I*, 1974, 732. ² (a) W. H. Graham and J. P. Freeman, *J. Amer. Chem. Soc.*, 1967, 89, 716; (b) R. C. Petry and J. P. Freeman, *J. Org. Chem.*, 1967, 32, 4034; (c) V. Grakauskas and K. Baum, *J. Amer. Chem. Soc.*, 1969, 91, 1679; (d) *J. Org. Chem.*, 1969, 34, 2840; (e) *ibid.*, p. 1545; (f) C. M. Sharts, *J. Org. Chem.*, 1968, 33, 1008; (g) C. L. Coon, M. E. Hill, and D. L. Ross, *ibid.*, p. 1387. ³ R. F. Merrit and F. A. Johnson, *J. Org. Chem.*, 1967, 32, 416. ⁴ L. Leroy, F. Dudragne, L. C. Adenis and C. Michaud, *Taturchedron Letters*, 1072, 2771.

⁴ J. Leroy, F. Dudragne, J. C. Adenis, and C. Michaud, Tetrahedron Letters, 1973, 2771.
⁵ M. Paulshock and J. C. Watts, U.S.P. 3,310,469 (1967) (Chem. Abs., 1967, 67, 11,275c).
⁶ R. L. Whistler and L. W. Doner, J. Org. Chem., 1970, 35, 3562.
⁷ H. Budzikiewicz, C. Djerassi, and D. H. Williams, 'Structure Elucidation of Natural Products by Mass Spectrometry,' vol 11, 1977 Under Structure 1964. p. 227, Holden-Day, San Francisco, 1964.